Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti‐counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free‐standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink. By tailoring the ink compositions, and thus, the rheological properties, the cholesteric phase rapidly forms without an annealing step, while the silicone shell provides encapsulation and support to the CLCE core, allowing for layer‐by‐layer printing of self‐supported 3D structures. As a demonstration, free‐standing bistable thin‐shell domes are printed. Color changes due to compressive and tensile stresses can be witnessed from the top and bottom of the inverted domes, respectively. When the domes are arranged in an array and inverted, they can snap back to their base state by uniaxial stretching, thereby functioning as mechanical sensors with memory. The additive manufacturing platform enables the rapid fabrication of 3D mechanochromic sensors thereby expanding the realm of potential applications for CLCEs.more » « less
-
Abstract Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption.more » « less
-
Abstract Recent advances in computational design and 3D printing enable the fabrication of polymer lattices with high strength‐to‐weight ratio and tailored mechanics. To date, 3D lattices composed of monolithic materials have primarily been constructed due to limitations associated with most commercial 3D printing platforms. Here, freeform fabrication of multi‐material polymer lattices via embedded three‐dimensional (EMB3D) printing is demonstrated. An algorithm is developed first that generates print paths for each target lattice based on graph theory. The effects of ink rheology on filamentary printing and the effects of the print path on resultant mechanical properties are then investigated. By co‐printing multiple materials with different mechanical properties, a broad range of periodic and stochastic lattices with tailored mechanical responses can be realized opening new avenues for constructing architected matter.more » « less
-
Abstract Architected materials typically maintain their properties throughout their lifetime. However, there is growing interest in the design and fabrication of responsive materials with properties that adapt to their environment. Toward this goal, a versatile framework to realize thermally programmable lattice architectures capable of exhibiting a broader range of mechanical responses is reported. The lattices are composed of two polymeric materials with disparate glass transition temperatures, which are deterministically arranged via 3D printing. By tailoring the local composition and structure, architected lattices with tunable stiffness, Poisson's ratio, and deformation modes controlled through changes in the thermal environment are generated. The platform yields lightweight polymer lattices with programmable composition, architecture, and mechanical response.more » « less
-
Abstract Direct ink writing is a facile method that enables biological, structural, and functional materials to be printed in three dimensions (3D). To date, this extrusion‐based method has primarily been used to soft materials in a layer‐wise manner on planar substrates. However, many emerging applications would benefit from the ability to conformally print materials of varying composition on substrates with arbitrary topography. Here, a high throughput platform based on multimaterial multinozzle adaptive 3D printing (MMA‐3DP) that provides independent control of nozzle height and seamless switching between inks is reported. To demonstrate the MMA‐3DP platform, conformally pattern viscoelastic inks composed of triblock copolymer, gelatin, and photopolymerizable polyacrylate materials onto complex substrates of varying topography, including those with surface defects that mimic skin abrasions or deep gouges. This platform opens new avenues for rapidly patterning soft materials for structural, functional, and biomedical applications.more » « less
An official website of the United States government
